

SARS-CoV-2 Introduction and Lineage Dynamics in Cameroon: Evidence from the Genomic Surveillance Network

Dr. FOKAM Joseph, National Public Health Emergency Operations Centre (NPHEOCC), CIRCB, Cameroon

On behalf of the National Genomic Surveillancze Group (ESSOMBA René, NJOUOM Richard, OKOMO Marie-Claire, EYANGOH Sara, GODWE Celestin, TEGOMOH Bryan, OTSHUDIEMA O. John, MOHAMED Moctar, MOUANGUE Christian, BILOUNGA Chanceline, BELINGA Sandrine, EPEE Emilienne, NDIP Lucy, KOUANFACK Charles, NDJOLO Alexis, BISSEK Z-K Anne-Cecile, SHANG Judith, NDONGMO Clement, ESSO Linda, YAP Boum II, ETOUNDI MBALLA Alain, NJOCK Louis

Hosted by :

- BACKGROUND & RATIONALE
- OBJECTIVES
- METHODS
- RESULTS AND DISCUSSION
- CONCLUSION & RECOMMENDATIONS

BACKGROUND & RATIONALE

- <u>Cameroon</u>: first COVID-19 case detected on March 6, 2020;
- Epidemiology of COVID-19: four different waves until mid 2022;
- Outbreak dynamics: may differ in magnitude, number
- of cases, hospitalisations and deaths across country;
 - Research question: What are the implications of SARS-CoV-2 var
- iants on the features of COVID-19 pandemic at country-level?

STUDY OBJECTIVES

To study the introduction and dynamics of SARS-CoV-2 lineages a nd their potential effects on transmission and disease severity followi ng the various epidemiological waves registered in Cameroon.

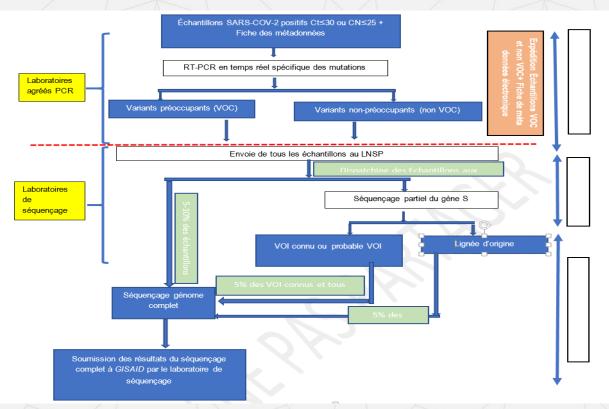
Specific objectives:

- 1. To design and set-up a SARS-CoV-2 genomic surveillance netw ork in Cameroon;
- 2. To study the diversity of SARS-CoV-2 lineages in Cameroon Cu sing whole-genome sequencing;
- 3. To study the effects of viral lineages on COVID-19 outcomes.

METHODS (1/2)

Study design

> A laboratory-based survey within the natio nal public health emergency operational fr amework for COVID-19 in Cameroon, from March 1, 2020 to March 30, 2022, An assessment of the national capacity for SARS-CoV-2 genomic surveillance and th e evolutionary patterns of SARS-CoV-2 lin eages across the four COVID-19 waves in the country.


Evaluation of the SARS-CoV-2 genomic s

urveillance network capacity

- (1) the number of frameworks for genomic s equencing,
- (2) the number of national strategies for SAR S-CoV-2 genomic surveillance,
- (3) the number of laboratories with COVID-19 molecular testing capacity;
- (4) the number of laboratories with the capac ity for variant screening using PCR point mutation assay,
- (5) the number of laboratories with SARS-C oV-2 sequencing capacity,
- (6) The number of samples processed for S ARS-CoV-2 genomic surveillance.

METHODS (2/2)

Procedures for SARS-CoV-2 genomic surveillance

Data analysis

- Full-length sequencing from all four sequencin g laboratories consecuti vely entered into the GISAID platform;
- Molecular phylogeny of the SARS-CoV-2 seque nces performed using Nexstrain

Ethical considerations Ministry of Public Heal th (368/NS/ /SG/CCOU SP/CSO).

RESULTS AND DISCUSSION (1/4)

I- Outcomes of the SARS-CoV-2 genomic surveillance network in Cameroon

N°	Key indicators	March 2020, (n)	March 2022 (n)	Specific comments
i.	Number of frameworks for the genomic surveillance platform	0	1	Strong governmental engagement (ministerial decision, April 12, 2021)
ii.	Number of national strategies for SARS- CoV-2 genomic surveillance	0	2	The first plan has been revised as per changes in the pandemic.
iii.	Number of laboratories with the capacity for COVID-19 molecular testing	1	45	24 public laboratories and 21 private laboratories
iv.	Number of laboratories with the capacity for variant screening by PCR point mutation assay	0	16	These are laboratories with open real- time PCR systems for SARS-CoV-2
V.	Number of laboratories with the capacity/network for SARS-CoV-2 sequencing	0	6	5 public labs and 1 private lab (performing targeted and/or whole- genome sequencing)
vi.	PCR-positive samples successfully processed for SARS-CoV-2 genomic surveillance	0	3,881	1,509 PCR-mutation assays, 1,612 targeted sequencing, 760 whole-genome sequencing

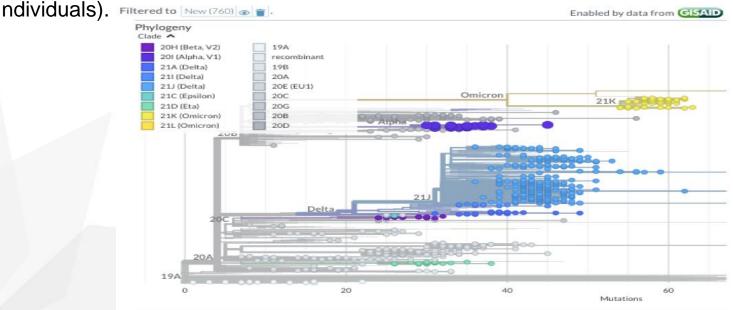
RESULTS AND DISCUSSION (2/4)

II- Diversity of SARS-CoV-2 lineage from whole-genome sequencing

Distribution according to regional residence

Region	Number	Percentage
Adamawa	17	2.2%
Centre	373	49.1%
East	45	5.9%
Far-North	11	1.4%
Littoral	142	18.7%
North	27	3.6%
West	44	5.8%
South	25	3.3%
South-West	76	10.0%
Total	760	100.0%

Study population

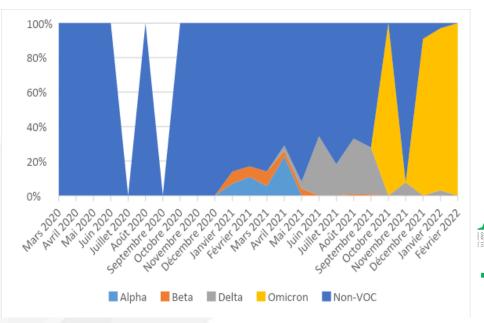

- 760 individual samples from Cameroon residen ts were enrolled in this study;
- Based on the quality of the whole-genome seq uences of SARS-CoV-2 that were deposited in GISAID between March 2021 and March 2022.

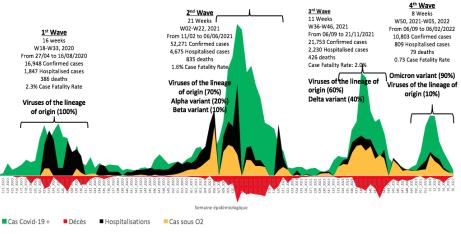
Overall distribution of SARS-COV-2 VOCs

- Greater proportion of SARS-CoV-2 circulating in Cameroon belonged to the viral sub-lineage s of the original strain from Wuhan (74%)
- 15% Delta variant, 6% Omicron variant, 3% Alpha variant and 2% Beta variant (Among 760 i adjuidents)

Diversity

Figure Phylogenetic tree of SARS-COV-2 lineages when using whole-genome sequences


RESULTS AND DISCUSSION (4/4)



III. Dynamics of SARS-CoV-2 lineages over time

Evolutionary trends of SARS-CoV-2 lineages per month

SARS-COV-2 lineage dynamics per wave in Cameroon

- Established genomic surveillance framework in Cameroon: 6 sequencing labor atory, with the identification of four VOCs were identified by whole genome sequ encing (Alpha, Beta, Delta, and Omicron);
- SARS-CoV-2 epidemic in Cameroon: driven by the viral lineage of origin in W ave 1, the co-introduction of the Alpha and Beta variants in Wave 2, the Delta var iant in Wave 3, and the Omicron variant in Wave 4, with an overall declining tren d in the wave duration, confirmed cases, hospitalisations, and CFR over time;
- Effect of viral clades: while transmissibility seems similar, SARS-CoV-2 lineage of origin and the Delta variant appeared to be the drivers of COVID-19 severity i n Cameroon.

REMERCIEMENTS / ACKNOWLEDGEMENT

- We thank the various laboratories who contributed with data for the sequence analysis of S ARS-CoV-2 used in this presentation;
- We are very appreciative to implementing partners for supporting workshops for the devel opment of this study;
- WHO, IDDS, Africa CDC, AFD, Africa CDC, ASLM), other funding sources including G lobal Funds, AFROSCREEN, ARIACOV, Bill and Melinda Gates Foundation (INV_0365 32), GIZ (Agreement number: 81279054), EDCTP PERFECT-Study RIA2020-EF3000;
- ➤ We thanks Africa CDC, GIZ for supporting participation to this conference.

